Interruption-free optical frequency reference

Lőrinc Sárkány¹, József Fortágh¹, Hidetoshi Katori²,³

¹ CQ Center for Quantum Science, Physikalisches Institut, Universität Tübingen
² Department of Applied Physics, Graduate School of Engineering, The University of Tokyo
³ Quantum Metrology Laboratory, RIKEN

Black Forest clock vs. Atomic clock

Clock = Oscillator + Counter

Uncertainty of the clock: $\varepsilon = \frac{\Delta \nu}{\nu}$

- **Black Forest clock:** $\varepsilon \sim 10^{-5}$
- **Atomic clock:** $\varepsilon \sim 10^{-18}$

frequency comb

1 s

100 000 000 000 000

Tübingen – Tokyo clock project

Project timeline

- Cooperation with Hidetoshi Katori since 2014
- First compact vacuum system with Strontium shipped to Tokyo in 2015: operation of a magneto-optical trap with the lasers at RIKEN
- Building a lasersystem for cooling Strontium in Tübingen since 2016
- Magneto-optical trap (MOT) of Strontium in Tübingen 2017
- Baden-Württemberg Stiftung project with a new concept for lattice clocks starts in 2017

Traditional operation of a Strontium lattice clock:

- Two (+1) cooling steps:
 - 461 nm (mK), 50 G/cm
 - 689 nm broadened, 10-15 G/cm
 - 689 nm narrow, 5 G/cm
- Clock measurement
- Dropping atoms

New concepts within our project:

Strontium core-shell magneto-optical trap:

Simultaneous two-stage cooling
- Cooling steps are separated in space instead of separation in time
- Core-shell laser beams
 - 461nm, 32MHz / 2923nm, 100-kHz
- Structured magnetic quadrupole-field

Continuous frequency reference and continuous clock:

- Continuous extraction of ~20mK cold atoms from the MOT with a moving optical lattice as conveyor belt
- Continuous spectroscopy of the clock transition

State-of-the-art atomic clocks

Cs-fountain clocks:
- Current definition of SI second
- Measures MW transition
- Uncertainty: 10^{-16}

Ion clocks:
- Sr⁺, Yb⁺, Al⁺,…
- Continuous measurements on a single ion
- Electromagnetic trapping
- Uncertainty: 10^{-18} (PTB, NIST / JILA)

AtOMIC lattice clocks:
- Sr, Yb, Hg, Cd
- Cycle-based operation
- $N \sim 10^5$ neutral atoms in an optical lattice
- Uncertainty: 10^{-18} (Tokyo, NIST)

Stability of the clock is limited by:

- Number of particles (projection noise)
- Useful measurement time
- Dicke effect: aliasing high-frequency technical noise to low-frequency domain

Stabilizing the clock with: $\sigma_{\text{acc}} \propto \frac{t_m + t_p}{\sqrt{N \cdot T_{\text{tot}}}}$