5.6 Thermoelectric and inelastic effects in charge transport through atomic and molecular contacts

T. J. Hellmuth, J. C. Klöckner, F. Pauly, Fachbereich Physik, Universität Konstanz

Goals

Our research interests are focused on the understanding of charge transport on the molecular scale. Beside elastic conduction, we investigate the inelastic contributions due to electron-vibration coupling and thermoelectric properties.

Our studies include:
- Heat dissipation in the electrodes,
- thermoelectric properties,
- heat conduction by electrons and phonons,
- inelastic electron tunneling spectra (IETS).

Results

Heat dissipation in atomic scale junctions [1]

Power dissipated in the probe (P) and the substrate (S),
\[Q_P(V) = \frac{2}{\hbar} \int_{-\infty}^{\infty} dE \left(\mu_P - E \right)^\alpha (E, V) |e - f_s| \]
\[Q_S(V) = \frac{2}{\hbar} \int_{-\infty}^{\infty} dE \left(\mu_S - E \right)^\alpha (E, V) |e - f_s| \]

A low-temperature, low-bias expansion shows that a heating asymmetry with respect to the bias or the electrodes results from a non-zero thermopower or, more generally, an electron-hole asymmetry.

\[Q_P(V) - Q_P(-V) \approx 2GTSV + O(V^3) \]
\[Q_P(V) - Q_S(V) \approx 2GTSV + O(V^3) \]

Using that \(Q_{\text{Total}} = Q_P + Q_S \) and \(Q_{\text{Total}} \approx GV^2 \), one can show that [2]:
\[Q_P(Q_{\text{Total}}) \approx \frac{1}{2} Q_{\text{Total}} \pm \frac{\sqrt{\pi}}{8} \frac{e^{1/2}}{b \sqrt{G}} \]

where the minus (plus) sign holds for positive (negative) bias voltage. The expression predicts that the voltage-related asymmetry in the power dissipation in the probe \(Q_P(Q_{\text{Total}}) \), expressed through the total dissipated power, should be rather independent of the level alignment, but sensitive to the level broadening.

Heat transport due to electrons & vibrations

Our phonon transport scheme uses the harmonic approximation and force constants determined by DFT [3].

\[H = \frac{1}{2} \sum_i p_i^2 + \frac{1}{2} \sum_i \sum_j q_i K_{ij} q_j \]

Extracting force constants from large clusters, the calculated phonon DOS of bulk gold compares very well with measurements.

The phonon heat conductance is:
\[\kappa_{\text{ph}} = \frac{1}{\Delta T} \int \frac{dE}{\pi} \frac{\partial P(E, \mu)}{\partial E} \]

Here, \(\partial P(E, \mu) / \partial E \) is the Bose function. Phonon as compared to electron heat transport plays an important role in molecular junctions.

\[\kappa_{\text{ph}} = \frac{1}{\Delta T} \int \frac{dE}{\pi} \frac{\partial P(E, \mu)}{\partial E} \]

We used the integrals:
\[K_0 = \int dE \kappa_{\text{ph}}(E) \frac{dE}{\pi} (E - \mu) \]

Transport through paracyclophane molecules

We analyzed charge transport properties of paracyclophane molecules. This contributes to the understanding of transport properties through π-stacked systems.

Findings:
- Transmission eigenchannels show that the transport is mostly carried by benzene π-orbitals and not by the alkane “clips”.
- Conductance decays exponentially with length.
- Thermopower increases linearly with the molecular length.
- The peaks in the IETS shift for different anchor groups.

References

